Optimization Beyond the Convolution: Generalizing Spatial Relations with End-to-End Metric Learning
ICRAJul 4, 2017Best Robot Vision Paper
To operate intelligently in domestic environments, robots require the ability
to understand arbitrary spatial relations between objects and to generalize
them to objects of varying sizes and shapes. In this work, we present a novel
end-to-end approach to generalize spatial relations based on distance metric
learning. We train a neural network to transform 3D point clouds of objects to
a metric space that captures the similarity of the depicted spatial relations,
using only geometric models of the objects. Our approach employs gradient-based
optimization to compute object poses in order to imitate an arbitrary target
relation by reducing the distance to it under the learned metric. Our results
based on simulated and real-world experiments show that the proposed method
enables robots to generalize spatial relations to unknown objects over a
continuous spectrum.