Prior robot painting and drawing work, such as FRIDA, has focused on decreasing the sim-to-real gap and expanding input modalities for users, but the interaction with these systems generally exists only in the input stages. To support interactive, human-robot collaborative painting, we introduce the Collaborative FRIDA (CoFRIDA) robot painting framework, which can co-paint by modifying and engaging with content already painted by a human collaborator. To improve text-image alignment, FRIDA's major weakness, our system uses pre-trained text-to-image models; however, pre-trained models in the context of real-world co-painting do not perform well because they (1) do not understand the constraints and abilities of the robot and (2) cannot perform co-painting without making unrealistic edits to the canvas and overwriting content. We propose a self-supervised fine-tuning procedure that can tackle both issues, allowing the use of pre-trained state-of-the-art text-image alignment models with robots to enable co-painting in the physical world. Our open-source approach, CoFRIDA, creates paintings and drawings that match the input text prompt more clearly than FRIDA, both from a blank canvas and one with human created work. More generally, our fine-tuning procedure successfully encodes the robot's constraints and abilities into a foundation model, showcasing promising results as an effective method for reducing sim-to-real gaps.
If a picture paints a thousand words, sound may voice a million. While recent robotic painting and image synthesis methods have achieved progress in generating visuals from text inputs, the translation of sound into images is vastly unexplored. Generally, sound-based interfaces and sonic interactions have the potential to expand accessibility and control for the user and provide a means to convey complex emotions and the dynamic aspects of the real world. In this paper, we propose an approach for using sound and speech to guide a robotic painting process, known here as robot synesthesia. For general sound, we encode the simulated paintings and input sounds into the same latent space. For speech, we decouple speech into its transcribed text and the tone of the speech. Whereas we use the text to control the content, we estimate the emotions from the tone to guide the mood of the painting. Our approach has been fully integrated with FRIDA, a robotic painting framework, adding sound and speech to FRIDA's existing input modalities, such as text and style. In two surveys, participants were able to correctly guess the emotion or natural sound used to generate a given painting more than twice as likely as random chance. On our sound-guided image manipulation and music-guided paintings, we discuss the results qualitatively.