Tool use, a hallmark feature of human intelligence, remains a challenging problem in robotics due the complex contacts and high-dimensional action space. In this work, we present a novel method to enable reinforcement learning of tool use behaviors. Our approach provides a scalable way to learn the operation of tools in a new category using only a single demonstration. To this end, we propose a new method for generalizing grasping configurations of multi-fingered robotic hands to novel objects. This is used to guide the policy search via favorable initializations and a shaped reward signal. The learned policies solve complex tool use tasks and generalize to unseen tools at test time. Visualizations and videos of the trained policies are available at https://maltemosbach.github.io/generalizable_tool_use.
Collaborative robots working on a common task are necessary for many applications. One of the challenges for achieving collaboration in a team of robots is mutual tracking and identification. We present a novel pipeline for online visionbased detection, tracking and identification of robots with a known and identical appearance. Our method runs in realtime on the limited hardware of the observer robot. Unlike previous works addressing robot tracking and identification, we use a data-driven approach based on recurrent neural networks to learn relations between sequential inputs and outputs. We formulate the data association problem as multiple classification problems. A deep LSTM network was trained on a simulated dataset and fine-tuned on small set of real data. Experiments on two challenging datasets, one synthetic and one real, which include long-term occlusions, show promising results.